
Resilient Task Planning and Execution for Reactive Soft Robots

Scott Hamill, John Whitehead, Peter Ferenz, Robert F. Shepherd, and Hadas Kress-Gazit1

Abstract— Soft robots utilize compliant materials to perform
motions and behaviors not typically achievable by rigid bodied
systems. These materials and soft actuator fabrication methods
have been leveraged to create multigait walking soft robots.
However, soft materials are prone to failure, restricting the
ability of soft robots to accomplish tasks. In this work we
address the problem of generating reactive controllers for
multigait walking soft robots that are resilient to actuator
failure by applying methods of formal synthesis. We present a
sensing-based abstraction for actuator performance, provide a
framework for encoding multigait behavior and actuator failure
in Linear Temporal Logic (LTL), and demonstrate synthesized
controllers on a physical soft robot.

I. Background and Introduction
Biological systems often rely on compliant and soft tissues

to perform complex motions and interact with the envi-
ronment in ways that would otherwise be impossible with
rigid bodied systems. Soft robotic systems seek to emulate
these behaviors through the use of flexible, continuously de-
formable materials. Incorporating these compliant materials
into soft actuators and chassis components allows soft robots
to perform tasks and operate in unstructured environments
inaccessible to rigid robotic systems.

In this work, we are interested in the behavior of fluidic
soft actuators - those in which deformation of a compliant
actuator is driven by pressurization of internal chambers.
Methods used to fabricate these actuators, such as casting
silicone elastomers [1]–[5] and lithographic processes with
photopolymers [6]–[8], provide an expansive design space
that can be exploited to create novel actuator designs and
robots capable of unique methods of locomotion [9]–[11].

Previous research has leveraged this expansive design
space to create walking soft robotic systems. Walking soft
robots achieve motion by pressurizing a set of soft actuators
in contact with a ground surface in a sequence, which we
refer to as a gait. Walking soft robots have been developed
that demonstrate multigait behavior - having more than one
available pressurization sequence that propels the robot. The
authors of [3] and [6] both present walking soft robots for
which multiple gaits have been developed, and in [5] we
present a method for automatically synthesizing gaits for
arbitrarily constructed, modular soft robot systems.

However, the compliant materials used in soft actuators are
prone to failure, either by rupturing or by developing leaks
due to small tears in the material. Ruptures and leaks may
prevent complete actuation, thereby restricting the ability
of the robot to move through a workspace and preventing

1 Sibley School of Mechanical and Aerospace Engineering, Cornell
University, {sbh92,jdw268,pmf58,rfs247,hadaskg}@cornell.edu. This work
was supported by NSF CMMI-1745139 and EFMA-1830924.

Fig. 1. Example: A multigait robot patrols between regions E and H. The
robot experiences an actuator failure in A as it moves around the hazard in
F on the way to E. The robot must utilize different gaits in order to reach
the current goal in region E as well as replacement components in C.

the robot from achieving its tasks. The performance of soft
actuators is difficult to predict as compliant, soft materials are
difficult to model. However, methods have been developed
for measuring the deformation of soft actuators [12], [13].
The ability to monitor soft actuator performance allows a
multigait robot to detect and react to actuator failure.

In this work, we generate high-level controllers that allow
soft robotic systems to react to environmental events such as
actuator failure. Specifically, we address the following prob-
lem: given an environment, multigait robot, and a mission
specification, generate a controller that is resilient to actuator
failure - that is, generate a controller that allows the robot to
leverage gait redundancy to fulfill the mission specification
despite actuator failure.

Example: Consider a scenario in which a multigait, legged
robot is tasked with continuously patrolling between the
regions E and H in the environment shown in Fig. 1. The
legs of the robot are replaceable and spare components are
available in region C. While moving toward region E, the
robot observes a hazard in region F and must take a more
circuitous route through B and A. The robot experiences an
actuator failure in A and must subsequently utilize different
gaits in such a way as to reach region E while still being
able to return to C for a replacement actuator.

Previous research has addressed the issue of gait resilience
with respect to walking robots [14], [15] as well as soft
robots [16], but these methods do not provide guarantees
of robot performance. Here, we address the problem of
generating resilient controllers by utilizing methods of formal
synthesis. Recent research has addressed the problem of gen-
erating controllers for high-level robot behaviors [17]. These
methods use discrete abstractions of robot and adversarial en-
vironment behaviors, capture these behaviors in Linear Tem-
poral Logic (LTL), and provide techniques for synthesizing
correct-by-construction controllers that guarantee the ability
of the robot to accomplish its tasks. Within the context of

resilience, similar techniques have been applied to different
domains such as vehicle power system management [18],
[19]. These works address synthesizing high-level controllers
that guarantee system performance despite generator failure,
but utilize different system abstractions.

High-level abstractions and synthesis methods provide an
expressive and flexible framework for encoding robot and
environmental behaviors. As shown in Sections V and VI,
variations in actuator reliability and environmental conditions
such as hazards are easily encoded, and these differences
produce markedly different, nuanced robot behaviors.

In this work, we present three contributions: 1) a sensing-
based abstraction of actuator health and failure, 2) a frame-
work for encoding multigait, reactive behavior in LTL, and
3) a demonstration of synthesized, correct-by-construction
controllers for a soft robotic system.

II. Preliminaries
The following section provides a brief overview of Linear

Temporal Logic (LTL) synthesis for high-level robot control.
The reader is referred to [17] for a more in depth discussion.

A. High-Level Control

We address the issue of generating a controller for high-
level robot behavior by posing the problem as a two player
game between the system (the robot) and an adversarial
environment. The environment controls the sensors of the
robot, i.e. how the system perceives the state of the world,
and the robot reacts by performing actions. The goal is to
synthesize a strategy for the system such that the robot is
guaranteed to be able to satisfy some behavioral requirement.

We define two sets of Boolean propositions: those con-
trolled by the environment, X, and those controlled by the
system, Y. The set of all atomic propositions is AP = X∪Y.

B. Linear Temporal Logic Syntax and Semantics

Linear Temporal Logic [20] is a formal language that
contains the Boolean operators ¬ (“not”) and ∧ (“and”), as
well as the temporal operators © (“next”) and U (“until”).
LTL formulas, defined over AP, are defined recursively as:

ϕF π ∈ AP | true | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 (1)
The operators ∨ (“or”), → (“implies”), and ↔ (“bi-
implication”) are derived from ∧ and ¬. The operators �
(“always”) and ^ (“eventually”) are derived from © and U.

LTL formulas are evaluated over an infinite sequence of
truth assignments, σ = σ0σ1σ2..., such that σi ∈ 2AP. The
expression σi denotes the propositions in AP that are true at
position i.

The formula �ϕ is true at position i if the formula is true
at all positions j ≥ i in σ. The formula ^ϕ is true at position
i if the formula is true in at least one position j ≥ i in σ.
The formula ©ϕ is true at position i if the formula is true
in the next position i + 1 in σ.

Mission Specification: The LTL specification used in this
work is of the following form [21]:

ϕ = (ϕe
i ∧ ϕ

e
t ∧ ϕ

e
g)→ (ϕs

i ∧ ϕ
s
t ∧ ϕ

s
g) (2)

The specifications ϕe
i and ϕs

i are Boolean formulas and
are the initial conditions of the environment and system,

respectively. The specifications ϕe
t and ϕs

t are the environ-
ment assumptions and system guarantees. These are of the
form ∧m∈M�Cm, where Cm are Boolean formulas that may
contain the © operator. The specifications ϕe

g and ϕs
g are

the environment liveness assumptions and system liveness
guarantees (the environment and system goals), respectively.
These specifications are of the form ∧o∈O�^Do, where Do

are Boolean formulas.
Controller Synthesis: The synthesis process is presented

in detail in [21]. The resulting controller is a finite state
automaton (FSA) of the form: A = (X,Y,Q,Q0, δ, L) where:
• X is the set of environment propositions
• Y is the set of system propositions
• Q is the set of states
• Q0 ⊆ Q is the set of initial states
• δ : Q × 2X → Q is a transition function
• L : Q→ 2Y is the labeling function of the states

The function δ is the system transition relation that maps a
current state and environment proposition values to the next
state. The function L maps a state to the system propositions
that are true in that state. The specification is said to be
realizable if there exists a solution such that the specification
is satisfied regardless of the behavior of the environment. In
this work we use the synthesis tool SLUGS [22].

III. Approach
A. Abstracting Multigait Behavior

Environment: We assume the robot workspace consists of
a finite number of regions, Reg = {R1, ...,Rp}. The location of
the robot is represented by a set of p Boolean propositions,
reg = {r1, ..., rp} ⊂ Y. The robot may only occupy one region
at a time. The adjacency relation, τ ⊆ Reg × Reg gives the
possible region transitions.

Robot Gaits: A multigait robot is able to select a gait from
a set of m different gaits, G = {G1, ...,Gm}. Gait selection is
represented by the set of propositions gaits = {g1, ..., gm} ⊂

Y, such that the proposition gi is true if and only if the robot
is using gait Gi. Gaits are mutually exclusive as the robot
may only utilize one gait at a time. Each gait is directional
and propels the robot in a given direction with respect to a
local reference frame. In order to capture the directionality
of each gait, we define a mapping function, DT : τ → 2G

that maps a region transition to the gaits capable of making
the transition. In order to avoid a situation in which no valid
gait is available, we add a proposition noGait to the set gaits.
In this work we abuse notation slightly by interchangeably
using Gi and gi as well as Ri and ri for clarity.

B. Abstracting Actuator Sensing and Health

Actuators: The set of all n leg actuators used by the robot
is denoted by the set Legs = {L1, ..., Ln}. Not all gaits utilize
all actuators. As such, we define a mapping function, LG :
G → 2Legs, that maps gait Gi to a subset of Legs used by that
gait. These are the actuators that are part of the pressurization
cycle for gait Gi. In addition, we define a mapping function,
GL : Legs→ 2G, that maps each actuator Li to the subset of
gaits in G that utilize that actuator.

Fig. 2. Left: physical system. Eight actuators are arranged in a radial
pattern around a chassis. The silver spheres are markers for a Vicon motion
capture system. Right: actuator design.

Actuator Sensors: Each actuator is associated with an
integer number of health states. The set of health states for
each of the n actuators is denoted by the set H = {h1, ..., hn}.
For each actuator i, we define a set of Boolean propositions,
Pi, that describes its health state: Pi = {∪(j=1,...,hi) pi, j} ⊂ X.
The propositions in each set Pi are mutually exclusive. Ac-
tuator health stages degrade (change state) in a consecutive
manner, e.g. if proposition pi,hi is true in one state and
degradation is sensed, at the next time step proposition pi,hi−1
is true and pi,hi is false. If proposition pi,hi is true, the
actuator is considered to be in perfect working condition,
i.e. “healthy.” If the proposition pi,1 is true, the actuator is
considered to be inoperable. We assume that the health of an
actuator may degrade any time the robot uses that actuator
to make a transition between two regions.

Cache Regions: We specify certain regions of the
workspace, Regc ⊆ Reg, as cache regions where the robot is
able to access new components, thereby allowing the robot to
exchange damaged actuators. When the robot reaches one of
these regions, the status of each actuator is reset to “healthy.”
The set Regc may be empty, which may affect the ability of
the robot to satisfy a mission specification.

IV. Robot Design and Gaits
A. Robot and Actuator Design

The robot design is shown in Fig. 2 (left). The robot
is composed of eight actuators mounted radially to a rigid
polyurethane (Carbon® RPU 70) plastic frame printed on a
Carbon® M1 printer. Each actuator is attached to a tab on the
chassis and is easily replaced. Embedded in each actuator is
a pressure chamber, flow to which is controlled by a solenoid
valve. All pressure generation and control is off-board.

Each actuator, one of which is shown in Fig. 2 (right), is
comprised of two parts: a body and a “foot.” The components
of the body, printed on the same Carbon® printer as the
chassis, are elastomeric polyurethane (Carbon® EPU 40).
The pressure chamber of the body is comprised of a bellowed
surface attached to a thick backing surface. The foot is
further comprised of three components: a rigid, ABS plastic
3D printed foot, a “toe” made from silicone rubber (Smooth-
On Dragon Skin® 20), and a low friction material adhered
to one side of the toe.

B. Actuator Motion and Gaits

Each actuator is connected via a pneumatic channel and
solenoid valve to a common pressure rail. The thickness of

Fig. 3. Sequences A-C, D-F, and G-I demonstrate three different gaits
propelling the robot in the positive Y direction in the local frame. Shown
right are the actuators used in each gait and the corresponding indices.

the backing side of the actuator is significantly greater than
that of the bellowed section, in effect creating an inextensible
layer (Fig. 2). As each actuator is pressurized, the bellowed
section expands and the inextensible material in the outer
layer causes the actuator to unfurl. As the actuator unfurls,
the higher-friction silicon material contacts the ground, im-
parting a force on the ground surface. The resulting chassis
motion is shown in Fig. 3. The low friction patch of material
on one side of the toe allows the actuator to return to its
resting position without further disrupting the chassis. The
yellow ABS protrusion, the “heel,” provides a low friction
contact point when each actuator is at rest, allowing the
chassis to slide as other actuators are pressurized.

As previously discussed, a gait is an actuator pressur-
ization sequence - a subset of the actuators on the robot
are pressurized according to a predetermined timing that
produces chassis motion. The octopod robot used in this
work is capable of three different gait motion primitives,
developed empirically, depicted in Fig. 3. Each gait utilizes
two actuators pressurized sequentially, and the rail pressure
and solenoid timing were hand tuned. For example, as shown
in Fig. 3 D-F, the robot uses actuator 4 to push the chassis
diagonally in the positive X/positive Y direction, and then
uses actuator 7 to push the robot in the negative X direction
back toward the center of the image. The net displacement
is in the positive Y direction. As the robot is radially
symmetric, these gait primitives are able to push the robot in
four directions in a body-fixed reference frame. In total there
are twelve gaits available to the robot. Note - adjusting the
timing of each primitive slightly and actuating both actuators
simultaneously causes the chassis to rotate in place. This
adjustment cycle is solely used to correct orientation errors,
and it is not part of the standard gait selection as it is assumed
that no actuators fail during this cycle.

C. Detecting Curvature and Actuator Degradation

Adhered to the side of each actuator is an optical waveg-
uide, marked in Fig. 2 by a dotted yellow line. We leverage
[13] to provide actuator performance sensing; there, optical
waveguides were embedded in the fingers of a soft pros-

Fig. 4. Left: normalized waveguide data. Right: A-D detail induced,
progressive damage to an actuator (imparted by an X-ACTO blade).

thetic hand. An infrared LED acts as a light source and
a phototransistor (PT) detects light intensity. As the hand
deforms, the waveguides experience strain and the light
transmissivity decreases, providing the ability to quantify
actuator deformation. We utilize the same technique in this
work. Attached to the body of the actuator are two mounting
locations for an infrared LED and a phototransistor (PT) for
detecting waveguide deformation.

The plot in Fig. 4 (left) shows the recorded PT intensity
values for a waveguide on an actuator during several ac-
tuation cycles. The intensity analog values are filtered and
normalized with respect to the at-rest sensor output value for
each individual cycle. Degradation and failure are determined
by the net change in the PT analog signal during actuation.

The plotted curves depict the reduction in performance
of an increasingly damaged actuator. Starting with a healthy
actuator, the robot executed the same gait several times while
curvature data was recorded. After each gait sequence, an
X-ACTO blade was used to deliberately damage one of the
bellowed sections of the actuator body, as shown in Fig.
4 (right), A-D. The curvature behaviors exhibited during
the first five cycles are all similar - these data correspond
approximately with Fig. 4 B. A small cut in the material
caused an audible air leak, but ultimately no significant
degradation in performance was observed. Cycles 6, 7, and
8 roughly correspond with the amount of damage depicted
in Fig. 4 C. In this case, the cut was expanded and enlarged.
Although the actuator was observed to be less effective
during these event cycles, the actuator was still capable of
moving the robot. Cycle 9 corresponds with the damage
shown in Fig. 4 D. In this case, the cut was lengthened
and expanded significantly. The corresponding waveguide
output plot clearly shows a distinguishable degradation in
performance and the actuator was observed to be ineffectual
in propelling the robot.

In this specific case, the plots of actuator degradation
can be grouped into three sets - cycles 1-5, for which
no degradation was detected, cycles 6-8, for which slight
degradation was detected, and cycle 9, for which the actuator
was deemed inoperable. As such, this particular actuator
experiencing the damage shown in Fig. 4 (B-D) could be
considered to have 3 actuator health states, hi = 3. This data
represents the behavior of one actuator with respect to a very
specific type of damage - thoroughly validating this method
for different actuators in different operating conditions will
require further testing.

V. Encoding Robot Behavior
A. Region Transitions and Gait Selection

We encode region transition and gait selection behavior
by appending the following LTL formulas to ϕs

t . Formulas
encoding proposition mutual exclusivity are omitted for
brevity.

Region Transitions: Each gait propels the robot in a
certain direction and allows the robot to make certain region
transitions. We encode the region transition behavior in the
following way:∧

rs∈reg

�

rs → ©

 ∨
{re |(rs,re)∈τ}

∨
g∈DT (rs,re)

re ∧ g

 (3)

If the robot is in region rs, at the next time step the robot
must transition to one of the regions allowed by the transition
relation τ, and must choose a gait that is compatible with that
direction of motion. If there are no available gaits for a given
transition in τ, the robot may not move to that region. Self
transitions, associated with noGait, are included in τ.

Gait Restrictions: For any inoperable actuator, the robot
is restricted from selecting any gait that utilizes that actuator.
These restrictions are encoded in the following way:∧

Li∈Legs

�

©pi,1 →

 ∧
g∈GL(Li)

¬© g

 (4)

B. Actuator Health

We encode actuator degradation and replacement by ap-
pending the following LTL formulas to ϕe

t .
Actuator Degradation: The environment controls the

state of each actuator but is only allowed to influence the
state of an actuator used by the currently selected gait as the
others are not pressurized. This behavior is captured in the
following way:∧

g∈gaits

�

g ∧ ¬

 ∨
r∈regc

r

→
 ∧

Li∈LG(g)

ϕDi ∧
∧

Lk<LG(g)

ϕDk

 (5)

where ϕDi , and ϕDk are defined as:

ϕDi =

 ∧
j=hi,hi−1,...,2

(pi, j → (©pi, j∨©pi, j−1))

 ∧ (pi,1→©pi,1)

ϕDk =
∧

j=hk ,hk−1,...,1

(pk, j↔©pk, j)

For those actuators that are associated with the currently
selected gait, assuming the robot is not in a cache region, the
environment may only alter the states of the actuator health
propositions according to the rule of consecutive degradation
previously discussed.

Cache Regions: If the robot moves into a cache region, in
the next time step the status of all actuators is set to “healthy,”
indicating that any failed actuators have been replaced:

�

 ∨

r∈regc

r

→
 ∧

i=1,...,n

© pi,hi

 (6)

Appending these statements to the mission specification
captures the high-level, gait switching behavior of a multigait

robot and, if the specification is realizable, ensures the
resilience of the robot to actuator failure.

C. Example Scenario

Fig. 5 (left) depicts the example scenario we address in
this work. The robot operates in a grid and is able to move
“north,” “south,” “east,” or “west” at each time step. The
mission specification is a patrolling task - the robot must
repeatedly visit two of the regions in the map, regions 11
and 12, depicted with yellow diamonds. This is encoded by
appending the following to ϕs

g:
(�^r11) ∧ (�^r12) (7)

Actuator caches are located in regions 3 and 14 and are
marked with green circles.

In this example we show how one can encode more
complex environment behaviors and tasks. We specify sets
of regions of the workspace that contain hazards that are
detectable by the robot and may be “activated” or “deac-
tivated” by the environment. If the robot moves into an
active hazard region, all of the actuators associated with the
currently selected gait are immediately rendered inoperable
regardless of health state.

Formally, we specify v sets of hazard regions by the
set T = {T1, ...,Tv}. We define a mapping function FT :
T → 2Reg, that maps each hazard set to a set of workspace
regions. The hazard sets are associated with a set of Boolean
propositions, t = {t1, ..., tv} ⊂ X. If the proposition ti is
true, the robot senses active hazards in each of the regions
in FT (Ti). We assume the propositions in t are mutually
exclusive and the set of hazard regions and set of cache
regions are disjoint.

In order to capture actuator damage due to hazards in the
specification, (∧¬ϕH) is added to the antecedent in Eq. 5:

ϕH =

∨
tk∈t

tk ∧

 ∨
r∈FT (tk)

r

 (8)

and the statement:∧
g∈gaits

�

g ∧ ¬
 ∨

r∈regc

r

 ∧ϕH

→

 ∧

Li∈LG(g)

©pi,1

 ∧ ∧
Lk<LG(g)

ϕDk

(9)

is added to ϕe
t , where ϕDk is defined as before.

In this example, there are two sets of hazard regions,
marked in Fig. 5 with blue checkers (regions 7, 9, 10) and
red stripes (regions 2, 5, 6, 15).

VI. Demonstration

We present two different robots, A and B, with different
assignments of actuator health states as shown in Fig. 5
(right). The actuators of robot A : HA = {3, 3, 3, 3, 3, 3, 3, 3},
have equal levels of reliability. Those of B : HB =

{5, 2, 3, 5, 1, 5, 1, 4} have asymmetrical actuator reliability.
Here, two actuators only have one state, meaning that they
are perpetually considered inoperable, are not affected by
cache regions, and may not be used for any gait.

Fig. 5. Left: example grid environment. Right: actuator reliability for
example robots A and B, values marked inside the circles. Italicized numbers
are actuator indices.

Fig. 6. Example scenario robot behavior, robot A shown at top, B bottom.
The blue and red patterns depict the two sets of (active) hazard regions.

A. Robot Behaviors

The synthesis algorithm produces markedly different
strategies for each robot that take advantage of the strengths
and weaknesses of the robot. Robot A has a greater level
of gait redundancy than robot B, meaning the robot may
use different gaits with independent sets of actuators in all
directions. Robot B, in contrast, does not have the same level
of directional redundancy due to the two permanently failed
actuators. However, several of the actuators of robot B (1, 4,
and 6) have a higher number of actuator health states and,
as a result, robot B has a greater reachable space than robot
A, i.e. robot B, unimpeded by hazard regions, may travel
farther than robot A before requiring actuator replacement.

B. Example Scenario Results and Physical Demonstration

The specifications for robots A and B are both realizable.
Runs of the synthesized automata are depicted graphically
in Fig. 6, and the corresponding behavior of the physical
system is shown in Fig. 7. In this scenario, both robots start
in region 12. In both figures, hazard regions are highlighted
if they are active as the robot approaches the region (other
activated hazard regions are not highlighted for clarity). In

Fig. 7. Physical demonstration, Robot A shown left, robot B shown right.
Image labels and active hazard highlighting correspond to instances in Fig.
6. Images b1, c1, d1, and d2 show the crimping of the pneumatic lines.

the graphical depiction, active actuators are boxed in green,
healthy actuators are colored blue, actuators that fail during
a transition are marked with a red X, failed actuators are
subsequently marked with red stripes, and actuators that the
environment has caused to degrade are shown in yellow.

In the images of the physical demonstration, goal regions
are marked with pink tags and cache regions with teal tags.
In each run of the physical demonstration, the degradations
sensed by the robot were simulated by manually setting
the proposition values, and actuator failures were simulated
by physically crimping the pneumatic channels, significantly
reducing the motion of the affected actuator. No actuators
were physically harmed during these demonstrations. In both
demonstrations the robot successfully sensed all actuation
“failure” events and reacted according to the synthesized
controller. Localization was provided by a Vicon motion
capture system.

Robot A: Initially, robot A starts in region 12, moves
up to region 0, and then over to the cache in region 3 (a1,
b1, and c1). In this scenario, the environment activates all
possible hazard regions and causes actuator degradations at
every possible transition, ultimately causing actuators 3, 6,
2, and 5 to fail, yet the robot takes the same route regardless
as it is able to leverage gait redundancy.

The robot subsequently moves through regions 4 and 10
to the goal in 11 before moving back toward the goal in
region 12. At this point, there is a bifurcation in the route
depending on the state of the actuators. As the robot moves
from region 11 back into region 10 (where the hazard is
inactive), actuator 5, previously in a degraded state, is caused
to fail (d1). In this instance, the robot senses the hazard in

region 9 is inactive, and proceeds back to region 11 via 8
and 14 (shown as white, dashed arrows in Fig. 6). However,
had the actuator not failed, the robot would have proceeded
to 11 along the bottom of the map via region 16 ignoring
the potential hazard in 15 (again, leveraging increased gait
redundancy), and had the hazard in 10 been active, the robot
would have been forced to take a more circuitous route back
through the cache in region 3. Both alternate paths are shown
as dashed green arrows in Fig. 6.

Robot B: In the absence of activated hazards, robot B
would be able take a direct route to region 11. However,
the robot must avoid hazards wherever possible due to the
two permanently failed actuators. The robot senses an active
hazard in region 15, and subsequently takes a conservative
route through both cache regions (a2, b2, and c2).

In moving from region 3 toward region 11 however, the
robot moves through region 10 despite the active status of the
hazard (d2). As actuators 3 and 8 fail as a result, the robot
must return to the cache in 3 before moving back toward
the goal in 12, denoted by a large dashed arrow (e2), again
conforming to a more conservative route.

VII. Discussion and Conclusion
In this work we addressed the problem of generating

controllers for multigait, walking soft robots that are resilient
to actuator failure. We presented an abstraction of multigait
behavior and actuator sensing, provided a framework for
encoding gait selection and actuator failure in LTL, and
demonstrated resulting synthesized automata on a physical
soft robot system operating in an adversarial environment.

The demonstrations show only a small part of the complex
behaviors of synthesized automata for different robot con-
figurations, but highlight the effectiveness of the synthesis
algorithm. The multigait abstraction and straightforward,
easily altered behavioral encoding in LTL produced nuanced
controllers for both robots. The flexibility of the behavioral
encoding allows specifications to be rapidly edited to address
different robots - in this case the only difference was the
integer health values specified in the set H. This concept
could easily be extended to include further robot behaviors.
For example, if actuators on the robot were able to grasp an
object as well as to contribute to a gait, holding or carrying
objects may restrict the robot from using associated gaits.
Further, encoding robot behaviors in more complex environ-
ments rather than the simple, two dimensional, obstacle-free
environment presented here (e.g. different gaits for different
terrains) can be done with the same framework. Encoding
these this behaviors and restrictions would involve simple
additions to the specification.

Future work on resilient, multigait behavior will focus on
two issues: 1) generating a configuration for a given set
of actuators with varying health levels that will satisfy a
specification, and 2) determining the minimum number of
health states required to satisfy given specifications.

ACKNOWLEDGMENT
We thank Anand Mishra for his contributions to waveguide

development and sensing.

References
[1] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. White-

sides, “Soft robotics for chemists,” Angewandte Chemie - International
Edition, vol. 50, no. 8, pp. 1890–1895, 2011.

[2] B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shep-
herd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. White-
sides, “Pneumatic networks for soft robotics that actuate rapidly,”
Advanced Functional Materials, vol. 24, no. 15, pp. 2163–2170, 2014.

[3] R. F. Shepherd, F. Ilievski, W. Choi, S. a. Morin, A. A. Stokes, A. D.
Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft
robot,” Proceedings of the National Academy of Sciences, vol. 108,
no. 51, pp. 20 400–20 403, 2011.

[4] H. Zhao, Y. Li, A. Elsamadisi, and R. Shepherd, “Scalable manu-
facturing of high force wearable soft actuators,” Extreme Mechanics
Letters, vol. 3, pp. 89–104, 2015.

[5] S. Hamill, B. Peele, P. Ferenz, M. Westwater, R. F. Shepherd,
and H. Kress-Gazit, “Gait Synthesis for Modular Soft Robots,” in
International Symposium on Experimental Robotics. Springer, Cham,
oct 2016, pp. 669–678.

[6] D. Drotman, S. Jadhav, M. Karimi, P. DeZonia, and M. T. Tolley,
“3D printed soft actuators for a legged robot capable of navigating
unstructured terrain,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 5532–5538.

[7] B. N. Peele, T. J. Wallin, H. Zhao, and R. Shepherd, “3D printing
antagonistic systems of artificial muscle using projection stereolithog-
raphy,” Bioinspiration & Biomimetics, vol. 10, no. 5, p. 055003, 2015.

[8] E. Cohen, V. Vikas, B. A. Trimmer, and S. P. Mccarthy, “Design
Methodologies for Soft-Material Robots Through Additive Manufac-
turing , From Prototyping to Locomotion,” Volume 5B: 39th Mecha-
nisms and Robotics Conference, no. July 2016, pp. 1–9, 2015.

[9] H.-T. Lin, G. G. Leisk, and B. Trimmer, “GoQBot: a caterpillar-
inspired soft-bodied rolling robot.” Bioinspiration & biomimetics,
vol. 6, no. 2, p. 026007, 2011.

[10] A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous Soft Robotic
Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actua-
tors,” Soft Robotics, vol. 1, no. 1, pp. 75–87, 2014.

[11] C. D. Onal, X. Chen, G. M. Whitesides, and D. Rus, “Soft mobile
robots with on-board chemical pressure generation,” in Springer Tracts
in Advanced Robotics, vol. 100. Springer, Cham, 2017, pp. 525–540.

[12] W. Felt, K. Y. Chin, and C. D. Remy, “Smart Braid Feedback for the
Closed-Loop Control of Soft Robotic Systems,” Soft Robotics, vol. 00,
no. 00, p. soro.2016.0056, 2017.

[13] H. Zhao, K. O ’brien, S. Li, and R. F. Shepherd, “Optoelectronically
innervated soft prosthetic hand via stretchable optical waveguides,”
Science Robotics, vol. 7529, no. 1, p. eaai7529, 2016.

[14] A. Cully, J. Clune, D. Tarapore, and J. B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[15] S. Koos, A. Cully, and J. B. Mouret, “Fast damage recovery in robotics
with the T-resilience algorithm,” International Journal of Robotics
Research, vol. 32, no. 14, pp. 1700–1723, 2013.

[16] V. Vikas, P. Grover, and B. Trimmer, “Model-free control framework
for multi-limb soft robots,” in IEEE International Conference on
Intelligent Robots and Systems, vol. 2015-Decem. IEEE, 2015, pp.
1111–1116.

[17] H. Kress-Gazit, L. Morteza, and V. Raman, “Synthesis for Robots:
Guarantees and Feedback for Robot Behavior,” Annu. Rev. Control
Robot. Auton. Syst. 2018, vol. 1, pp. 211–247, 2017.

[18] H. Xu, U. Topcu, and R. M. Murray, “Specification and synthesis
of reactive protocols for aircraft electric power distribution,” IEEE
Transactions on Control of Network Systems, vol. 2, no. 2, pp. 193–
203, 2015.

[19] N. Ozay, U. Topcu, and R. M. Murray, “Distributed power allocation
for vehicle management systems,” IEEE Conference on Decision and
Control and European Control Conference, pp. 4841–4848, 2011.

[20] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977). IEEE, 1977,
pp. 46–57.

[21] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’Ar,
“Synthesis of Reactive(1) designs,” Journal of Computer and System
Sciences, vol. 78, no. 3, pp. 911–938, 2012.

[22] R. Ehlers and V. Raman, “Slugs: Extensible GR(1) synthesis,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
9780. Springer, Cham, 2016, pp. 333–339.

